Year 4-Arithmetic Expectations

This series of documents aims to summarise the number facts, mental calculation strategies and the stage(s) of the progression towards the written methods for each of the four operations.

For each strategy, the concrete and pictorial representations have been suggested. However, to keep the document to a more manageable size, the imagery has not been shown explicitly as this should be found in your school's agreed mental calculations policies.

The strategies used within this document are taken from the Lancashire Mathematics Team Progression in Mental Calculation Strategies Policies and the Progression Towards Written Methods Policies.

See www.lancsngfl.ac.uk/curriculum/primarymaths for the full policies.

Each strategy will require specific modelling (teaching) and sufficient practice for children to develop confidence, accuracy and fluency in performing them.
Children should also be taught when it is appropriate to use each strategy, by looking at the numbers involved and making effective decisions. Again, this is a sign of a child's fluency in mathematics; being able to recognise which strategy best suits a given calculation, rather than always using the same method regardless of the numbers involved.

Acknowledgements

Special thanks to the following teachers who helped to create these documents:

Sue Byrom - Colne Park Primary	Naomi Tyson - Gisburn Road Community Primary	Hannah Blackburn - Lowerhouse Juniors
Tara Warbrick - Colne Park Primary	Nick Browne - Gisburn Road Community Primary	Jess Dornan - Lowerhouse Juniors
Jane Dempsey - Burnley Springfield Primary	Laura Mitchell - Burnley St Stephen's CE Primary	Michelle Hume - Whittlefield Primary
Andrew Douglas - Burnley Springfield Primary	Moira Waller - Burnley St Stephen's CE Primary	Stephen Riley - Whittlefield Primary

Skills	Examples
Counting	
Count in multiples of 6, 7, 9, 25 and 100	Count from 0 in sixes What number would come next in this counting sequence? $0,7,14,21,28$, What number is missing from this counting sequence? $0,25,50,100,125$
Count backwards through zero to include negative numbers.	What number would come next in this counting sequence? $5,0,-5,-10$,
Count up and down in hundredths.	Count from 0 in hundredths Count back from $\frac{34}{100}$ to $\frac{15}{100}$ Continue this sequence: $0.06,0.07,0.08 \ldots$
Find 0.1 , I, 10, 100 or 1000 more or less than a given number.	What is 1000 more than 2345? 10 less than 709 is \qquad What is one tenth more than 5.9? What is 100 less than 1176 ? What is 100 less than 1076?
Number Facts	
Recall and use addition and subtraction facts for 100	$\begin{array}{lcr} 100-33=- & 24+\ldots=100 & 100=+71 \\ 100-49=- & 100-_=19 & 68=\overline{100-} \end{array}$
Recall and use addition and subtraction facts for multiples of 100 totalling 1000	$\begin{aligned} & 1000-400=_\quad 200+\ldots=1000 \quad 1000=_+100 \quad 300=1000- \\ & \overline{100}=_00+_00 \text { find different ways to complete } \end{aligned}$
Recall multiplication and division facts for multiplication tables up to $\mathbf{1 2} \mathbf{x}$ 12	$\begin{array}{lll} 7 \times 6= & 48=12 \times & 3 \times \ldots=27 \\ 45 \div 9= & \div \times _=35 \\ \div & \div 8=11 & 12=108 \div \end{array}$
Multiplying by 0 and I	$354 \times I=$ $803 \times _=803$ $1734=1 \times$ $354 \times 0=_$ $803 \times _=0$ $0=0 \times$
Dividing by I	$542 \div 1=\ldots \quad 607=607 \div \ldots 38=\ldots \ldots 1$
Recognise and use factor pairs and commutativity in mental calculations.	$\begin{aligned} & 60 \times 3=6 \times 10 \times 3 \text { reordered to give } 6 \times 3 \times 10=180 \\ & 14 \times 4=7 \times 2 \times 4 \text { with order of calculations being } 7 \times(2 \times 4)=56 \end{aligned}$
Mental Calculation Strategies - Addition and Subtraction	
Derive and use addition and subtraction facts for I and 10 (with decimal numbers to one decimal place)	
Partition and combine multiples of hundreds, tens and ones. Concrete - Diennes equipment, place value counters	$320+150$ 320 add $100=420$ then add $50=470$ $243+230$ 243 add $200=443$ then add $\mathbf{3 0}=473$ $460-140$ 460 subtract $100=360$ then subtract $40=320$

© Lancashire Mathematics Team - Lancashire County Council 2019

Pictorial - number line	$562-320 \quad 562$ subtract $300=262$ then subtract $20=242$ $234+125 \quad 234$ add $100=334$ then add $\mathbf{2 0}=354$ then add $\mathbf{5}=359$ (not crossing any boundaries) $765-24 \mathrm{I} 765$ subtract $200=565$ then subtract $40=5 \mathrm{I} 5$ then subtract $\mathrm{I}=5 \mathrm{I} 4$ (not crossing any boundaries) $85+47 \quad 85$ add $40=125$ then add $7=132$ (crossing hundreds and tens boundaries) $122-35 \quad 122$ subtract $30=92$ then subtract $5=87$ (crossing hundreds and tens boundaries)
Reorder numbers in a calculation. Concrete - Diennes equipment, place value counters, beadstring	$\begin{aligned} & 7+12+3+5 \text { reordered as } 7+3+12+5 \text { to make use of the bond to } 10 \\ & 18+6-8 \text { reordered as } 18-8+6 \text { to make use of the place value of } 18 \\ & 27+75 \text { reordered as } 75+27 \text { to make use of } 75+25 \text { seeing } 27 \text { as } 25+2 \end{aligned}$
Identify and use knowledge of number bonds within a calculation and identify related facts, e.g. $150+270$ from $15+27$ Concrete - Diennes equipment, place value counters Pictorial - Diennes jottings	$120+80$ using knowledge of $12+8=20$ $250+130$ using knowledge of $25+13=38$ $200-70$ using knowledge of $20-7=13$ $460-150$ using knowledge of $46-15=31$
Find differences by counting up through the next multiple of 10 or 100 Concrete - Diennes equipment, beadstring Pictorial - number line	$80-43$ $43+\mathbf{7}=50+\mathbf{3 0}=80$ so the difference is $\mathbf{3 7}$ $92-35$ $35+\mathbf{5}=40+\mathbf{5 0}=90+\mathbf{2}=92$ so the difference is $\mathbf{5 7}$ $203-96$ $96+\mathbf{4}=100+\mathbf{1 0 0}=200+\mathbf{3}=203$ so the difference is $\mathbf{1 0 7}$ $504-180$ $180+\mathbf{2 0}=200+\mathbf{3 0 0}=500+\mathbf{4}=504$ so the difference is $\mathbf{3 2 4}$
Bridge through 10 when adding or subtracting a single digit number (partitioning, e.g. 58+5=58+2+3 or 76-8=76-6-2) Concrete - Diennes equipment, beadstring Pictorial - number line	$\begin{array}{\|ll\|} \hline 48+35 & \text { as } 48+2+33=50+33=83 \\ 97+64 & \text { as } 97+3+61=100+61=161 \\ 103-25 & \text { as } 103-3-22=100-22 \text { (using number bonds to } 100 \text {) } \\ 230-72 & \text { as } 230-30-40-2=200-40-2 \\ \hline \end{array}$
Add or subtract a multiple of 10 and adjust (for those numbers close to multiples of IO) Concrete - Diennes equipment, place value counters Pictorial - number line	$\begin{array}{ll} \hline 84+28 & \text { as } 84+30-2=114-2=112 \\ 167+48 & \text { as } 167+50-2=217-2=215 \\ 96-38 & \text { as } 96-40+2=56+2=58 \\ 213-58 & \text { as } 213-60+2=153+2=155 \end{array}$
Mental Calculation Strategies - Multiplication and Division	
Multiply a one- or two-digit number by 10 and 100 Concrete - Diennes equipment, place value counters Pictorial - place value chart	$\begin{array}{\|l} \hline 7 \times 10 \\ 9 \times 100 \\ 71 \times 10 \\ 63 \times 100 \\ \hline \end{array}$

Use related facts to multiply $\mathbf{H 0 0}$ by a one-digit number Concrete - Diennes equipment, place value counters Pictorial - place value chart, related facts multiplication trio e.g. $7 \times 6=42$ then $700 \times 6=4200$	600×7 related to $6 \times 7=42$ This should be understood as 'six hundred sevens'. As the number of 7 s is 100 times greater than six sevens, so the product is 100 x greater. $\begin{aligned} & 500 \times 8 \text { related to } 5 \times 8=40 \\ & 900 \times 6 \text { related to } 9 \times 6=54 \end{aligned}$
Use factor pairs to multiply $\mathbf{H 0 0}$ by a one-digit number. Pictorial - place value chart for multiplying by 100	$\begin{aligned} & 600 \times 7 \text { becomes } 6 \times 100 \times 7 \text { reordered as } 6 \times 7 \times 100 \\ & 500 \times 8 \text { becomes } 5 \times 100 \times 8 \text { reordered as } 5 \times 8 \times 100 \\ & 900 \times 6 \text { becomes } 9 \times 100 \times 6 \text { reordered as } 9 \times 6 \times 100 \end{aligned}$
Use compensation to multiply T9 by a one-digit number. NB T9 represents a two-digit number with 9 ones Pictorial - rectangular array or a rectangle with given dimensions	49×3 considered as $50 \times 3-1 \times 3$ (read as 'fifty threes subtract one three') 29×7 considered as $30 \times 7-1 \times 7$ (read as 'thirty sevens subtract one seven') 89×6 considered as $90 \times 6-1 \times 6$ (read as 'ninety sixes subtract one six')
Use related facts to multiply TU $\times 5$ (by multiplying by 10 and halving). Concrete - Diennes equipment, place value counters Pictorial - place value chart and a part-part-whole diagram, rectangular arrays on squared paper	28×5 becomes $28 \times 10=280$ then $280 \div 2=140$ 81×5 becomes $8 \mathrm{I} \times 10=810$ then $810 \div 2=405$ 54×5 becomes $54 \times 10=540$ then $540 \div 2=270$
Use related facts to multiply TU $\times 20$ (by multiplying by 10 and doubling). Concrete - Diennes equipment, place value counters Pictorial - place value chart and a part-part-whole diagram, rectangular arrays on squared paper	$\begin{aligned} & 34 \times 20 \text { becomes } 34 \times 10=320 \text { then } 320 \times 2=640 \\ & 47 \times 20 \text { becomes } 47 \times 10=470 \text { then } 470 \times 2=940 \\ & 68 \times 20 \text { becomes } 68 \times 10=680 \text { then } 680 \times 2=1360 \end{aligned}$
Use partitioning to multiply TU by a one-digit number. Pictorial - partitioning diagram using grid method strategy	57×4 becomes $50 \times 4+7 \times 4$ (read as 'fifty fours add seven fours') 36×7 becomes $30 \times 7+6 \times 7$ (read as 'thirty sevens add six sevens') 93×6 becomes $90 \times 6+3 \times 6$ (read as 'ninety sixes add three sixes')
Multiply together three numbers. Concrete - rectangular arrays created with counters or cubes Pictorial - rectangular arrays on squared paper	$3 \times 4 \times 6$ (read as 'three lots of four sixes') $7 \times 3 \times 9$ (read as 'seven lots of three nines') $5 \times 6 \times 8$ (read as 'five lots of six eights')
Use place value, known and derived facts to divide mentally. Concrete - Diennes equipment, place value counters Pictorial - place value chart	$\begin{aligned} & 120 \div 10 \\ & 600 \div 100 \\ & 850 \div 10 \end{aligned}$

Use related facts to divide HTO by a one-digit number. Pictorial - place value chart, related facts division trio e.g. $42 \div 6=7$ then $420 \div 60=7$	$\begin{aligned} & 480 \div 8 \text { related to } 48 \div 8 \\ & 630 \div 9 \text { related to } 63 \div 9 \\ & 300 \div 6 \text { related to } 30 \div 5 \end{aligned}$
Use partitioning to divide TU by a one-digit number. Concrete - Diennes equipment, place value counters Pictorial - part-part-whole diagram	$68 \div 4$ by partitioning into 40 and 28 (both multiples of 4) $95 \div 5$ by partitioning into 50 and 45 (both multiples of 5) $84 \div 6$ by partitioning into 60 and 24 (both multiples of 6)
Use partitioning to double or halve any number, including decimals to one decimal place. Concrete - place value counters Pictorial - partitioning diagram	Double 374 Halve 468 Double 4524 Find half of 7602 Double 7.6 What is half of $8.2 ?$

Progression Towards Written Calculation Strategies - Addition

This is the final stage of the method, and should be continued to be used for all written addition calculations.
The first example would be explained as follows:
$5+8=13$, put 3 down and carry the 10 (written as a 1 in the tens column)
$20+40+10$ that was carried over $=70$ (7 written in the tens column)
$600+0=600$ (6 written in the hundreds column)
Children will be expected to use this method for adding numbers with more than 3 digits, numbers involving decimals and adding any number of amounts together.

HTU	321		
625	367	+7	£3.48
$\begin{array}{r}\text { a } \\ +\quad 48 \\ \hline\end{array}$	$\begin{array}{r} \\ +\quad 85 \\ \hline\end{array}$	$+\quad 48$ +376	+ £0.78
673	452	376	£4.26
1	11	1	11

Supported (if necessary) by the use of place value counters.
Progression Towards Written Calculation Strategies - Subtraction

This final stage is the compact method of decomposition. The example shows how the same calculation would be carried out using the method from the previous year and the final method.

This is the final stage of the process and will continue to be used with greater numbers and numbers involving decimals.

Supported (if necessary) by the use of place value counters.

Progression Towards Written Calculation Strategies - Multiplication

In this stage, the array is removed and children use the grid method.
This is an important step in retaining children's understanding of multiplication.
23×8

x	20	3
8	160	24
	$160+24=184$	

Progression Towards Written Calculation Strategies - Division						
This is the 'chunking' method of division in which children use key facts of the multiplication tables of the divisor. The repeated subtraction is made more efficient by subtracting 'chunks' of the divisor and where steps are repeated, children are encouraged to combine these to make the process more efficient.	$\begin{aligned} 24 & \\ 3 \longdiv { 7 2 } & \\ \frac{-30}{42} & 10 x \\ \frac{-30}{12} & 10 x \\ \frac{-12}{0} & 4 x \end{aligned}$	$\begin{aligned} 1 x & =3 \\ 2 x & =6 \\ 5 x & =15 \\ 10 x & =30 \end{aligned}$	$\begin{array}{r} 24 \\ 3 \longdiv { 7 2 } \\ -60 \\ \hline 12 \\ -12 \\ \hline 0 \end{array}$	$20 x$ $4 x$	$\begin{aligned} & 32 \text { r4 } \\ & 6 \longdiv { 1 9 6 } \\ & -\frac{180}{16} \\ & -\quad 30 x \\ & -\frac{12}{4} \end{aligned}$	$\begin{aligned} 1 x & =6 \\ 2 x & =12 \\ 5 x & =30 \\ 10 x & =60 \\ 20 x & =120 \end{aligned}$
Decision Making						
When calculating, children should ask themselves: - do I know the answer because it is a fact I have learnt? - can I work it out easily in my head? - can I use some equipment or a jotting? - do I need to use the written method?						

The strategies used within this document are taken from the Lancashire Mathematics Team Progression in Mental Calculation Strategies Policies and the Progression Towards Written Methods Policies. See www.lancsngfl.ac.uk/curriculum/primarymaths for the full policies.

